Welcome to ZOJ Problem Sets Information Select Problem Runs Ranklist ZOJ Problem Set - 3494
BCD Code

Time Limit: 5 Seconds      Memory Limit: 65536 KB

Binary-coded decimal (BCD) is an encoding for decimal numbers in which each digit is represented by its own binary sequence. To encode a decimal number using the common BCD encoding, each decimal digit is stored in a 4-bit nibble:

```Decimal:    0     1     2     3     4     5     6     7     8     9
BCD:     0000  0001  0010  0011  0100  0101  0110  0111  1000  1001
```

Thus, the BCD encoding for the number 127 would be:

``` 0001 0010 0111
```

We are going to transfer all the integers from A to B, both inclusive, with BCD codes. But we find that some continuous bits, named forbidden code, may lead to errors. If the encoding of some integer contains these forbidden codes, the integer can not be transferred correctly. Now we need your help to calculate how many integers can be transferred correctly.

Input

There are multiple test cases. The first line of input is an integer T ≈ 100 indicating the number of test cases.

The first line of each test case contains one integer N, the number of forbidden codes ( 0 ≤ N ≤ 100). Then N lines follow, each of which contains a 0-1 string whose length is no more than 20. The next line contains two positive integers A and B. Neither A or B contains leading zeros and 0 < AB < 10200.

Output

For each test case, output the number of integers between A and B whose codes do not contain any of the N forbidden codes in their BCD codes. For the result may be very large, you just need to output it mod 1000000009.

Sample Input

```3
1
00
1 10
1
00
1 100
1
1111
1 100
```

Sample Output

```3
9
98
```

References

Author: GUAN, Yao
Contest: The 8th Zhejiang Provincial Collegiate Programming Contest
Submit    Status